PPC PLAN
Preparedness, Prevention and Contingency (PPC) Plan

Facility Name

Pennsylvania Department of Transportation
Street Address
City, County, Pennsylvania zip code

Date of Initial PPC Plan: date
Date of PPC Plan Revision: date

Figures
1. Site Location Map
2. Facility Layout Map
3. Site Map Showing Drainage Features and Receptors

Appendices
1. SPCC Information, SPCC Regulatory Compliance Matrix, and SPCC Certifications
2. Implementation Schedule for Plan Elements not Currently in Place
3. Spill Documentation Form
4. Stormwater Pollution Prevention Best Management Practices
5. Response Equipment Inventory and Storage Area Inspection Checklist
6. Training Documentation Form

1.0 INTRODUCTION AND FACILITY DESCRIPTION

This Preparedness, Prevention and Contingency (PPC) Plan has been prepared to prevent emergencies and accidents and to provide effective and efficient response to emergencies and accidents that may occur at Pennsylvania Department of Transportation (PennDOT) facilities. The objective of the PPC Plan is to reduce the potential impact of spills, releases, accidents and other emergencies on public health, occupational safety and the environment.

The Pennsylvania Department of Environmental Protection (PADEP) Guidelines for the Development and Implementation of Environmental Emergency Response Plans, dated March 1999, was used as a guidance document when preparing this PPC Plan. In addition, other applicable U.S. Environmental Protection Agency (USEPA) and PADEP regulations were considered in the development of this PPC Plan.

This PPC Plan will be review and updated on an annual basis or as needed to reflect any changes at the site. If the plan fails in an emergency, the plan will be reviewed and revised to meet the facility’s needs. A copy of the PPC Plan will be maintained onsite at all times.
1.1 Facility Description and Location

This facility consists of an administrative center, county office building, meeting site for employees, parking area for equipment, storage yard, and fleet repair garage for year round maintenance activities of state owned roadways in ________ County. Mechanic work areas include equipment repair, parts room, welding shop, carpenter shop, and paint shop. Materials required for summer and winter maintenance of these roadways are stockpiled at this site. An automated fuel depot serving state-owned vehicles is located on the premises. No manufacturing processes are conducted at this site.

The following materials may be potentially stored at this site: paint, solvent, roadway materials including waste asphalt, scrap metal, used oil (including used oil filters), antifreeze, batteries, and outdated or unusable products. A materials and waste inventory is provided in Section 1.3.

This facility is located at street address in City, ________ County, Pennsylvania. The __________ is the closest body of water which is located approximately ________ miles from the facility. In general, storm water drainage is towards the ________ direction.

A 7 ½ minute USGS Site Location Map and Facility Layout Map are included as Figures 1 and 2, respectively. A Site Drainage Map Showing Drainage Features and Receptors is included as Figure 3. See PPC Plan instruction for information on figures.

1.2 Existing Emergency Response Plan

Briefly describe any existing plan, which has been previously developed by the installation, for the purpose of pollution incident prevention or emergency response preparedness. If the plan has previously been approved by the DEP, this should also be noted, along with the date of approval.

1.3 Material and Waste Inventory

<table>
<thead>
<tr>
<th>Material/Waste (non-oils)</th>
<th>Location</th>
<th>Normal Inventory</th>
<th>Maximum Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint</td>
<td></td>
<td>__________ gallons</td>
<td>__________ gallons</td>
</tr>
<tr>
<td>Line Paint</td>
<td></td>
<td>__________ gallons</td>
<td>__________ gallons</td>
</tr>
<tr>
<td>Paint Thinner/Remover</td>
<td></td>
<td>__________ gallons</td>
<td>__________ gallons</td>
</tr>
<tr>
<td>Brake Fluid</td>
<td></td>
<td>__________ gallons</td>
<td>__________ gallons</td>
</tr>
<tr>
<td>Antifreeze</td>
<td></td>
<td>__________ gallons</td>
<td>__________ gallons</td>
</tr>
<tr>
<td>Waste Antifreeze</td>
<td></td>
<td>__________ gallons</td>
<td>__________ gallons</td>
</tr>
<tr>
<td>Vehicle Batteries</td>
<td></td>
<td>__________ batteries</td>
<td>__________ batteries</td>
</tr>
<tr>
<td>Waste Batteries</td>
<td></td>
<td>__________ batteries</td>
<td>__________ batteries</td>
</tr>
<tr>
<td>Acetylene</td>
<td></td>
<td>__________ cylinders</td>
<td>__________ cylinders</td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
<td>__________ cylinders</td>
<td>__________ cylinders</td>
</tr>
<tr>
<td>Propane</td>
<td></td>
<td>__________ cylinders</td>
<td>__________ cylinders</td>
</tr>
<tr>
<td>Aggregate</td>
<td></td>
<td>__________ tons</td>
<td>__________ unlimited</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td></td>
<td>__________ pounds</td>
<td>__________ pounds</td>
</tr>
<tr>
<td>Liq. Calcium Chloride</td>
<td></td>
<td>__________ gallons</td>
<td>__________ gallons</td>
</tr>
<tr>
<td>Materials/Waste (Oils)</td>
<td>Location</td>
<td>Normal Inventory</td>
<td>Maximum Capacity</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Sodium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland Cement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other material/waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other material/waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other material/waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form Oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linseed Oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic Resin Track Coat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Seal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Fluid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Oil and Grease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unleaded Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other oily material/wastes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Oily Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note, if the total volume of oily materials exceeds the threshold specified by the US Environmental Protection Agency’s Spill Prevention Control and Countermeasures (SPCC) requirements, than SPCC Plan elements must be incorporated into this PPC Plan or developed as a standalone document. Thresholds that trigger SPCC requirements are aboveground storage capacity greater than 660 gallons in a single container or an aggregate storage capacity greater than 1,320 gallons or a total underground storage capacity greater than 42,000 gallons. Information on SPCC requirements are provided as Appendix 1.
The location of these materials and wastes are shown on the Facility Layout Map (Figure 2). Material Safety Data Sheets (MSDS) for these hazardous materials are located _______________________. These MSDS are readily accessible to all employees.

1.4 Pollution Incident History

List the previous pollution incidents, the date, the material or waste spilled, approximate amount spilled, environmental damage, and action taken to prevent a recurrence. List any pollution incidents which have occurred within two years of cover date.

1.5 Implementation Schedule for Plan Elements Not Currently in Place

Provide a list of any missing or incomplete aspects of the plan and a time schedule when they will be implemented.

An implementation schedule, or any elements of the plan not currently in place, must be developed. Each missing or incomplete aspect of the plan should be addressed and discussed within the applicable elements of the plan. Missing of incomplete aspects must be implemented as soon as possible and in conformance with all USEPA and PADEP regulations and requirements. Following are examples of items that may need to be included in this section:

- Installation of 110% secondary containment for the used oil AST
- Repair cracks in secondary containment for fuel oil AST
- Perform and document inspections of hazardous materials storage areas
- Installation of stormwater management basins
- Provide training to facility personnel
- Purchasing of additional spill response equipment

An Implementation Schedule for Plan Elements not Currently in Place is included as Appendix 2.

2.0 DESCRIPTION OF PLAN IMPLEMENTATION

2.1 Organizational Structure of Facility for Plan Implementation

A PPC Committee has been appointed and is responsible for implementing, maintaining and updating the PPC Plan. The Plan will be reviewed and updated on an annual basis or as needed to reflect any changes at the site. If the plan fails in an emergency, the plan will be reviewed and revised to meet the facility’s need(s). Each member of the PPC Committee and each person listed as an Emergency Coordinator in Section 2.2 under List of Emergency Coordinators should be thoroughly familiar with all information included in the PPC Plan and should have access to a copy of the Plan.

Below are the names and titles of the persons currently serving on the PPC Committee followed by a brief description of their duties and responsibilities:

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>County Waste Management Coordinator</td>
</tr>
<tr>
<td></td>
<td>County Equipment Manager</td>
</tr>
<tr>
<td></td>
<td>County Maintenance Manager</td>
</tr>
<tr>
<td></td>
<td>District __-0 Environmental Planner</td>
</tr>
<tr>
<td></td>
<td>District __-0 Facility Administrator</td>
</tr>
</tbody>
</table>

- County Waste Management Coordinator: Monitor Plan compliance; schedule PPC Committee meetings; coordinate spill cleanup activities and report spills to appropriate agencies (including the District __-0 Environmental Planner and the County Maintenance Manager).
- **County Equipment Manager**: Act in the absence of the County Waste Management Coordinator and County Maintenance Manager. Ensure routine inspections and the preventive maintenance program are conducted; maintain good housekeeping; report any unusual occurrence or problems that may be discovered during routine inspections immediately to the County Maintenance Manager or other responsible person; maintain an adequate supply of spill absorbent materials.

- **County Maintenance Manager**: Act in the absence of the County Waste Management Coordinator; periodically inspect facility and ensure appropriate actions are taken in the event that a problem is discovered during a routine inspection; schedule personnel and equipment in the event of a spill or other emergency; provide training for appropriate employees on an annual basis (i.e., Right-To-Know, Hazardous Waste/Material - 1st Responder Awareness).

- **District Environmental Planner**: Overall coordination between the Department and other agencies.

- **Facility Administrator**
- **Safety Personnel**
- **Training coordinator**
- **Other Personnel (list)**

2.2 **List of Emergency Coordinators and Chain of Command**

In an emergency, contact the following individuals in the order shown. The list is the order in which they will assume responsibility as alternates. There is always one of the listed persons on-site or on call to act as the emergency coordinator at all times. This list is posted in the ______________ so that the Emergency Coordinator can be contacted in the event of an emergency.

Verify roles and responsibilities with upper management

1. **Name________________ County Maintenance Manager**
 Work Phone Number: (____)______________
 Home Address: ___________________________
 Home Phone: _____
 Home Phone Number: ()________________

2. **Name________________, Lead Asst. Maintenance Manager**
 Work Phone Number: (____)______________
 Home Address: ___________________________
 Home Phone Number: ()________________

3. **Name________________, County Equipment Manager**
 Work Phone Number: ()________________
 Home Address: ___________________________
 Home Phone Number: ()________________

4. **Name___________________, PPC Coordinator**
 Work Phone Number: ()________________
 Home Address: ___________________________
 Home Phone Number: ()________________
2.3 Duties and Responsibilities of the Emergency Coordinator

When there is a potential emergency situation the Emergency Coordinator must ensure that alarms or communication systems are activated and that all facility personnel are notified and evacuated, if necessary. Adequate control measures, such as applying absorbent materials to a spill, constructing dikes or dams to prevent material from entering drainage systems or waterways, covering drains, etc., should be implemented by appropriate trained site personnel. The Emergency Coordinator should oversee these activities to ensure that they are conducted properly.

The Emergency Coordinator must immediately notify the appropriate response agencies such as the local fire company, local or state police, PA Department of Environmental Protection, local sewage plant, County Hazmat units, etc., depending on the nature and magnitude of the emergency. The District Environmental Planner must also be notified.

When notifying emergency response agencies, the following information should be given and documented on the Spill Documentation Form (Appendix 3):

- Name of person reporting the emergency
- Name and location of facility
- Phone number where Emergency Coordinator can be reached
- Date, time, location of incident
- Brief description of emergency; type(s) and quantities of material involved, extent of injuries, potential hazards to health, safety and environment. (Refer to Material Safety Data Sheet, Emergency Response Guidebook, etc.)
- Extent of contamination (if any) to land, air, water, if known

It is the Emergency Coordinator’s responsibility to attempt to assess the emergency to determine the appropriate actions and take all reasonable measures to stabilize the situation. If the Emergency Coordinator determines that site personnel are not adequately trained to contain a spill or release or conduct cleanup activities, the Emergency Coordinator will then contact an emergency response contractor to respond to the emergency/incident.

After an emergency, the Emergency Coordinator (with PA Department of Environmental Protection approval) must ensure that waste material generated during an emergency is properly contained and stored on site. The material will then be transported off site to a properly permitted treatment, storage, and/or disposal (TSD) facility. The Emergency Coordinator must also ensure that any equipment or supplies used during an emergency are adequately decontaminated and/or restocked so that appropriate equipment and supplies will be readily available in the event of another emergency.

3.0 SPILL - LEAK PREVENTION AND RESPONSE

3.1 Pre-Release Planning

The primary sources of possible pollutants (including waste) are listed below with the pollution incident prevention practices also indicated.

3.1.1 Aboveground Storage Tanks (ASTs)

There are a variety of ASTs at the facility as shown on Figure 2.

- Impervious pad with concrete secondary containment to contain 110% of the tank volume
- Backup valve installed on heated tanks at main withdrawal valve
- Venting capacity suitable for fill and withdrawal rates
- Tanks checked for capacity prior to being filled
- No loose combustible material, empty or full drums are permitted within containment areas
• Hoses and fittings checked for proper connection before unloading/loading begins
• Tank contents, safe heating temperature, no smoking signs, fire extinguishers within 50 feet and accessible
• Adequate secondary containment
• Labeling or signage indicating the tank contents, health and safety hazard warnings, and no smoking are utilized.
• Fire extinguishers are within 50 feet and are accessible.

3.1.2 Paints and Solvents Used in Highway Line and Vehicle Painting

• Vehicle paint is stored in ________________________________
• Drums of line paint are stored on ________________________________
• Drums of solvent are stored on ________________________________
• The line paint is __________________________ type of paint.

3.1.3 Storage of Calcium Chloride for Snow/Ice Removal

- Liquid calcium chloride is stored in ________________________________
- Bagged calcium chloride is stored in ________________________________

3.1.4 Storage of Sodium Chloride and Anti-Skid Material for Snow/Ice Removal

- Sodium Chloride (salt) and Anti-Skid are stored in ________________________________

3.1.5 Storage of Herbicides

Herbicide is stored in ________________________________.
- Only authorized, trained and knowledgeable personnel handle herbicides.
- PennDOT’s herbicide use is primarily by outside contractors

3.1.6 Vehicle Maintenance Wastes: Used Motor Oil, Batteries, Antifreeze, and Oil Filters

- Used antifreeze, used motor oil, used batteries and used oil filters are collected and recycled through district contracts. Scrap metal, scrap drums and scrap tires are also recycled through district contracts
- These materials are collected in house and stored ________________________________

3.1.7 Underground Storage Tanks (USTs)

The facility has a variety of USTs as shown on Figure 2.

This facility is currently under a fuel upgrade to satisfy 1998 mandated federal/state regulations. All UST’s will be removed and new, double walled tanks, cathodic protected, electronically monitored, alarm activated leak detection equipment is being installed to meet those 1998 standards.
• Manholes will be properly color coded to identify contents
• Automated inventory system will also be installed to meet 1998 standards.

3.1.8 Runoff from Garage Floors

• Potential for deleterious materials to enter garage drains is kept to a minimum through good housekeeping practices
• Drain stopper mats, absorbent pads, socks, pillows and blankets are available in the event of a spill near a drain to prevent materials from entering drain

3.1.9 Storage of Cylinders (Including Propane)

- Stored in a vertical position and chained to prevent damage to valves and gauges
- Collars maintained on cylinders
- Stored in designated, well-ventilated area away from direct exposure to the elements
- Full cylinders are kept separated from empty cylinders
- Storage area is clearly marked “no smoking” and signs posted. Fire extinguisher is within 50 feet and accessible.

3.1.10 Storage of Other Materials Used for Roadway and Vehicle Maintenance

Only compatible materials stored together (acids and flammable materials are not stored near each other)

3.1.11 Fuel Island

- Persons fueling equipment are required to remain with equipment until fueling is completed
- Automatic shut-off or other device to keep fuel nozzle in open position is not allowed
- Fuel and motor oil access is controlled by a security card reader system (Gasboy) which requires two (2) cards to dispense material. (voyager card)
- Spill absorbent materials (i.e., pads, socks, pillows, loose absorbents) stored at fuel island
- Fire extinguisher within __feet and accessible
- This facility is under a fuel facility upgrade to meet 1998 standards. All UST’s will be removed and new, double walled tanks, cathodic protected, electronically monitored, alarm activated leak detection equipment installed.

3.1.12 Stormwater Runoff

- All stockpiles of environmentally sensitive materials are kept covered and runoff directed away from these areas
- Collection basins are periodically cleaned out
- Stormwater best management practices (BMPs) are included as Appendix 4.

3.2 Material Compatibility

All environmentally sensitive materials are stored in appropriate containers, tanks, enclosed structures, and containment or are kept __________________________. Compatible materials are stored together and approved containers are used to store waste materials. Wastes are segregated and not mixed (i.e., corrosive materials are stored separate from flammable materials). ASTs are dedicated to compatible materials. USTs are dedicated for single product use.

3.3 Inspection and Monitoring Program

On a daily basis, the following areas are visually observed for any problems and any unusual conditions are immediately reported to the supervisor who is responsible for notifying the Emergency Coordinator:

- Waste handling and storage areas
- Hazardous and environmentally sensitive material storage areas
- Equipment fueling area
- Storage yard area for materials brought in from the field
- ASTs for visual material levels, leaks in lines or tanks, outlet valves properly closed and locked, hoses kept inside containment area
- USTs for leaks by manual dipstick readings.
- Highway and maintenance equipment for leaks in hoses/lines, etc.

On a weekly basis, the following areas have detailed inspection and monitoring conducted:

- Tanks and piping for corrosion or leaking valves
- Waste storage areas (spill pallets and containment areas) for valve closure, spills, leaks, proper labeling, overfilled drums, etc.
- Drains for excessive oil and grease flows
- Storage of salt and anti-skid mixtures
- Labeling on all chemical products, Right-To-Know information readily available and accessible at central
location
• Tarps or coverings over applicable outdoor materials

On a monthly basis, an in-depth inspection of road equipment used to transport environmentally sensitive materials; such as gasoline trucks, distributors, tar kettles, and line paint trucks, are conducted. A cursory inspection, at the beginning of each day, is conducted on each piece of equipment being used that day.

Example inspection forms are included as Appendix 5.

3.4 Preventive Maintenance

A preventive maintenance program is in place for equipment and tanks containing environmentally sensitive materials. The following is a description of the activities conducted:

- Oil distributors are inspected daily, temperature gauge checked along with observation of burner at the time of starting, hoses and fittings are checked for signs of leakage, loose fittings are tightened or replaced as needed, wires are checked for frays
- Hoses and valves are periodically checked on paint machines and are tightened or replaced as needed
- Ground cables, hoses and valves are periodically checked on gas trucks
- Hoses, fittings, motors, heaters and electrical connections are checked weekly on the heated
- oil storage tanks
- Storage facilities are inspected on a regular basis with appropriate repairs made as needed. Also, grease traps, oil/water separators, collection basins, and sumps are cleaned regularly
- Preventive maintenance checklist are completed and maintained in the files.

3.5 Housekeeping Program

- Storage areas are designated for environmentally sensitive materials. Materials are stored in a neat, orderly fashion in approved containers
- Regular refuse pick up and disposal is conducted
- Waste oil and antifreeze, used motor oil, used batteries and oil filters are collected and recycled through district contracts. Scrap metal, scrap drums and scrap tires are also recycled through district contracts. These materials are collected and stored within containment or on spill pallets, until proper pick up and disposal/recycling by contractor
- Small spills are quickly cleaned up with absorbent materials (pads, socks, pillows, loose absorbent, etc.) and collected for proper disposal
- Regular quarterly inventory and disposal of hazardous or residual waste is conducted through a district contract with __________________________.
- There is a person designated for yard cleanup and site organization.

3.6 Security

Describe the security procedures employed at the installation to prevent accidental or intentional entry that could result in a violation of Departmental regulations, or injury to persons or livestock.

Security systems described in the plan should address, as necessary: fencing; lighting; vehicular traffic control; access control; visitors passes; locked entrances; vandalism; locks on drain valves and television monitoring. Security procedures must be in accordance with applicable PennDOT and PADEP regulations

This facility has a __. Lights are available for night operations and security. Visitors are directed to the main office building entrance of this facility.

3.7 External Factors Planning
The only external factor, which could have serious impact on the health and safety of the public and employees, would be a fire. In the event of such an occurrence, the appropriate agencies would be immediately contacted. Flooding, power outages, or snowstorms would have minimal impact or effect in operations. An emergency generator is available for limited power if needed. If an employee strike should occur, management personnel would maintain a 24-hour watch during the strike with gates locked and secured accordingly.

3.8 Employee Training Program

The following training is provide to the appropriate employees:

- First Responder/Hazardous Material (Awareness Level): The Occupational Safety & Health Administration (OSHA) requires, under 29 CFR Part 1910.120, that certain workers who are likely to witness or discover a hazardous material release receive annual training on what to do if you are a first responder to a hazardous material incident
- Right-To-Know: Based on the requirements of The Right-To-Know Law (Act 159 of 1984), an employee has a legal right to know the identity of hazardous substances used in the workplace and the health hazards posed by exposure to these substances. Annual training is provided to every Department employee that uses, handles, or is exposed to hazardous substances in the workplace
- PPC Training
- Training records with adequate documentation are maintained for all employees. A copy of training documentation form is provided as Appendix 6.

4.0 COUNTERMEASURES

4.1 Countermeasures Undertaken by Facility

- In the event of a spill or major leak of an environmentally sensitive material, the first priority is to attempt to stop the cause of the spill/release. This must be done using the proper precautions and appropriate personal protective equipment. If the material is unknown, attempt to identify the material by labels, placards, other markings, etc.
- Once the material is identified, appropriate measures must be implemented (with proper protection for workers) to stop the spread of the spill and to prevent it from entering any drains or waterways. Use spill kits (pads, socks, pillows, blankets, and loose absorbent) to control smaller spills. Place absorbent materials in a fashion that will prevent the material from migrating any further. In the event of a large spill, use of equipment, shovels, and other appropriate tools to move sand or other material to construct a dike/containment structure will help to collect the material and prevent further spread or flow into any drainage system.
- If a material spills near a drain/inlet, use drain stopper mats to prevent the material from entering the drain/inlet
- If material gets into a waterway, prevent the material from getting further downstream by placing booms across the entire width of the waterway (at a point downstream from the spilled material), preferably at a narrow point. Use absorbent pads to absorb material that may be floating on the surface of the water
- If material spills in an area with secondary containment, ensure valves are closed on the containment structure and collect spilled material with absorbents. Once the material has been absorbed, collect used absorbents (pads, pillows, socks, blanket, etc.) in an empty, approved, 3-ringed, 55 gallon drum for appropriate waste inventory and proper disposal
- After a spill has been contained and the immediate emergency has subsided, cleanup of the spill material should be initiated. Use shovels or equipment, as necessary, to complete cleanup. If material has spilled on soil, remove any stained soil. Use of proper personal protective equipment, such as protective suits, gloves, safety glasses, coveralls, etc., must be worn to protect the employee. After cleanup, decontamination of equipment must be completed. Spill kits and absorbent materials must be restocked.

4.2 Emergency Response Contractor(s)
There exists a District-Wide Contract No. _______ for the inventory, collection, removal and proper disposal of hazardous waste generated by the District, with provision for emergency response (24-hour) for hazardous spill clean up. This Contract is with __________________________. The contact person is __________________. Their address is ______________________, _________, PA ______. Their phone number is (___) ________ and their fax number is (___) ________.

Also, the District recently entered into another District-Wide Contract No. _______ for Emergency Road Response. This contract is for quick response (within 2 hours) to open the roadway and get traffic moving; with work limited to initial accident response, removal of obstructions and materials from the right-of-way, containerization, transportation, characterization, storage, and disposal of wastes generated within PennDOT’s right-of-way. The District’s Emergency Management Coordinator, _____________, administers this contract. The phone number is (___) ____________.

4.3 Internal and External Communication and Alarm Systems

The facility is equipped with a telephone capable of making external contacts. Most vehicles are equipped with two-way radios with a radio base station located in the Facilities main office, enabling communication with other PennDOT offices. A public address system is available for use relating to on-site communications. Managers and staff also have access to telephone pagers and cellular phones.

4.4 Evacuation Plan For Facility Personnel

An audible alarm will be sounded in the event of an emergency requiring evacuation the building. The building is also equipped with a paging system that can be operated from any phone. Portable fire extinguishers are located throughout the building. Diagrams of evacuation plans are posted in the facility.

Personnel have been designated as exit guards to ensure order is maintained during evacuation. Office personnel shall exit through the main entrance doors (if possible) or other exit through the garage doors (if possible) or other appropriate exit and proceed to designated safe area. Personnel designated as searchers will check all areas of the building to ensure no one remains inside the building. After the building evacuation is completed, the Emergency Coordinator or other designated person will give employees permission to their respective work areas.

4.5 Emergency Equipment

<table>
<thead>
<tr>
<th>Emergency Equipment</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spill Kit (absorbent material)</td>
<td></td>
</tr>
<tr>
<td>Fire Extinguishers</td>
<td></td>
</tr>
<tr>
<td>First Aid Kit</td>
<td></td>
</tr>
<tr>
<td>Eye Wash Stations</td>
<td></td>
</tr>
<tr>
<td>Communication Equipment</td>
<td></td>
</tr>
<tr>
<td>Two-way Radios</td>
<td></td>
</tr>
<tr>
<td>Public Address System</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td>Forklift, Backhoe, Loaders</td>
<td></td>
</tr>
<tr>
<td>Hand Tools (Shovels, etc)</td>
<td></td>
</tr>
<tr>
<td>Distributor (with pumps)</td>
<td></td>
</tr>
<tr>
<td>Hoses (for pumping)</td>
<td></td>
</tr>
</tbody>
</table>
Reusable equipment used in an emergency will be decontaminated thoroughly on-site and placed back into service. A maintenance program in which the emergency equipment is periodically checked to ensure it is in operating condition is in place. Spill kits are periodically restocked and absorbent materials are available at all times.

5.0 EMERGENCY SPILL CONTROL NETWORK

5.1 Arrangements with Local Emergency Response Agencies

Efforts have been made to familiarize local police, fire, and HAZMAT emergency response teams with the facility layout and hazardous materials at this site.

- Provide a list of local emergency response agencies and hospitals. Include the phone numbers and describe arrangements concerning the emergency services they will provide.
- Provide a list of agencies and phone numbers that must be contacted in the event of an emergency or spill. A list must be developed for notifying State, local, and Federal regulatory agencies of all spills. Such a list should include, as applicable: PADEP (see Guidance Document Appendix IV); PA Emergency Management Agency; County Health Department; County EMA: PA Fish Commission; the National Response Center (U.S. EPA and U.S. Coast Guard); local police and fire departments; the local sewage treatment plant (for discharges to sewer system); and downstream public water supplies, industrial water users, and recreation areas.

5.2 Emergency Telephone Numbers for ___________ Facility

<table>
<thead>
<tr>
<th>NAME/POSITION</th>
<th>WORK NUMBER</th>
<th>HOME NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name __________, County Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name __________, Assistant County Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name __________, County Equipment Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name __________, PPC Coordinator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name _________, ADE-Maintenance (-0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name __________, Dist Emergency Mgt Coord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name __________, District Environmental Planner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA DEP (24 hour response)</td>
<td>(717) 705-4700</td>
<td></td>
</tr>
<tr>
<td>PA Fish & Boat Commission</td>
<td>1-800-854-7365</td>
<td></td>
</tr>
<tr>
<td>County Name Hazmat Response Team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Response Center</td>
<td>1-800-424-8802</td>
<td></td>
</tr>
<tr>
<td>PA Emergency Management Agency (PEMA)</td>
<td>(717) 651-2001</td>
<td>(717) 651-2002</td>
</tr>
<tr>
<td>Local County Name EMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of Local Fire Company</td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>PA State Police</td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>Name of Local Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of Local Sewer Authority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Response Contractor(s):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3 Downstream Notification Requirements for Storage Tanks

The downstream notification requirement is not applicable for this facility. Aggregate above ground storage tank capacity does not exceed 21,000 gallons.

Or

- **Downstream Notification List** shall include all municipalities and surface water users within 20 downstream miles of the tank facility. Surface water users include drinking water companies, and industries that utilize surface water intakes; and municipalities include each county, township, city and borough located within this downstream corridor. This list is to be developed via assistance from the local emergency management agency. (Refer to Appendix V for an example.)
- **Annual Written Notification** must be given to downstream water users and municipalities on the Notification List. This written notification at a minimum must include a detailed inventory of the type and quantity of material in storage at the facility.
- **Annual Update** must be developed each year in cooperation with the local Emergency management agency. This notification list update will show any changes in contacts, users, and telephone numbers needed for emergency downstream notification and the annual written notification. Also, any changes in the emergency response organization (such as telephone numbers) should be updated.

Appendix 1

SPCC Information, SPCC Regulatory Compliance Matrix, and SPCC Certification

SPCC Information
A Spill Prevention, Control and Countermeasures (SPCC) plan must be prepared by all facilities subject to the U.S. EPA's Oil Pollution Prevention Regulation, which was published in the Federal Register on December 11, 1973 and was promulgated under Section 311(j)(1)(C) of the Clean Water Act and later amended by the Oil Pollution Act of 1990. The two main purposes of SPCC programs are:

- To prevent oil spills from occurring; and
- To prevent spilled oil from reaching navigable waterways

Who is regulated by the SPCC regulations?
There are three criteria a facility must meet to be regulated by the SPCC regulations. These criteria are 1. the facility must be non-transportation related, 2. the facility must have an aboveground storage capacity greater than 660 gallons in a single container or an aggregate storage capacity greater than 1,320 gallons or a total underground storage capacity greater than 42,000 gallons, and 3. there must be a reasonable expectation of a discharge to navigable waters or adjoining shorelines.

Who prepares the SPCC plan?
An SPCC plan may be written by the owner or operator of the facility or their authorized environmental consultant, engineer or scientist. However, it must be certified by a registered Professional Engineer (PE). By certifying the SPCC plan, the Professional Engineer, having examined the facility, shall attest that the SPCC plan has been prepared in accordance with good engineering practices.

What is a non-transportation related facility?
These facilities (including all equipment and appurtenances) may include, but are not limited to:
- Fixed onshore and offshore oil well drilling facilities;
- Mobile onshore and offshore oil well drilling platforms, barges, trucks or other mobile facilities;
- Fixed onshore and offshore oil production structures, platforms, derricks and rigs;
• Mobile onshore and offshore oil production facilities;
• Oil refining or storage facilities;
• Industrial, commercial, agricultural, or public facilities that use, store, drill for, produce, gather, process, refine or consume oil or oil products;
• Waste treatment facilities;
• Loading areas/racks, transfer hoses, loading arms and other equipment that are appurtenant to a non-transportation related facility;
• Highway vehicles and railroad cars used to transport oil exclusively within the confines of a non-transportation related facility; and
• Pipeline systems used to transport oil exclusively within the confines of a non-transportation related facility.

What is considered as "oil storage capacity?"
Oil storage includes all containers storing oil at a facility. The **capacity** of the containers (maximum volume) must be considered and **not** the actual amount of product stored in the container (operational volume). Oil storage containers include, but are not limited to,
• tanks,
• containers,
• pails,
• drums,
• quart containers,
• transformers,
• oil-filled equipment, and
• mobile or portable totes.

A facility may be subject to SPCC regulations if they have at least one of the following oil storage capacities:
• If a facility has one aboveground oil storage container greater than 660 gallons; **or**
• If a facility has a total aboveground oil storage capacity greater than 1,320 gallons; **or**
• If a facility has a total underground oil storage capacity of greater than 42,000 gallons.

Under the SPCC regulations, oil is defined as

"oil of any kind or in any form including, but not limited to, petroleum, fuel oil, sludge, oil refuse and oil mixed with wastes other than dredged spoil and oily mixtures."

This also includes non-petroleum oils, animal and vegetable oils.

How do I determine if my facility could reasonably discharge oil into or upon navigable waters or adjoining shorelines?
This determination is based upon a consideration of the geographical and locational aspects of the facility. The location of the facility must be considered in relation to streams, ponds and ditches (perennial or intermittent), storm or sanitary sewers, wetlands, mudflats, sandflats or farm tile drains. The distance to navigable waters (as defined in 40 CFR 110.1), volume of material stored, worst case weather conditions, drainage patterns, land contours, soil conditions, etc., must also be taken into account. Further, according to the regulations, this determination shall **not** include consideration of man-made features such as dikes, equipment or other structures that may serve to restrain, hinder, contain or prevent an oil discharge.

What do I have to do now?
Facilities that meet the three criteria (non-transportation related facility, have sufficient storage capacity, and could reasonably discharge to navigable waters or adjoining shorelines) **must** comply with the SPCC regulations. The SPCC regulations require the facility owner/operator to prepare an SPCC plan for their facility within six months of becoming operational and to implement the SPCC plan within 12 months of the start of facility operations. This plan must be well thought out and prepared in accordance with good engineering practices. SPCC elements may be incorporated into a PPC Plan.
<table>
<thead>
<tr>
<th>40 CFR 112 REQUIREMENT</th>
<th>SPCC/PPC PLAN SECTION RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 CFR 112.3 - Requirements for preparation and implementation of Spill Prevention Control and Countermeasure (SPCC) Plans</td>
<td></td>
</tr>
<tr>
<td>(b) Plan prepared within 6-months after facility became operational.</td>
<td></td>
</tr>
<tr>
<td>Plan implemented within one year after facility became operational.</td>
<td></td>
</tr>
<tr>
<td>(d) Professional Engineer's (P.E.) Certification</td>
<td></td>
</tr>
<tr>
<td>(e) Plan available during normal 8-hour day.</td>
<td></td>
</tr>
<tr>
<td>(f) (1) Extension of time to prepare and implement Plan.</td>
<td></td>
</tr>
<tr>
<td>(2) Required submissions for requests of time extensions.</td>
<td></td>
</tr>
<tr>
<td>40 CFR 112.4 - Amendment of SPCC Plan by Regional Administrator (R.A.)</td>
<td></td>
</tr>
<tr>
<td>(a) Whenever a facility discharges more than 1,000 gallons of oil into navigable waters or has two reportable spills within 12 months, the following information shall be submitted to the RA:</td>
<td></td>
</tr>
<tr>
<td>(1) Name of the facility; (1)</td>
<td></td>
</tr>
<tr>
<td>(2) Name(s) of the owner or operator; (2)</td>
<td></td>
</tr>
<tr>
<td>(3) Location of the facility; (3)</td>
<td></td>
</tr>
<tr>
<td>(4) Date and year of the initial facility operation; (4)</td>
<td></td>
</tr>
<tr>
<td>(5) Maximum storage or handling capacity; (5)</td>
<td></td>
</tr>
<tr>
<td>(6) Description of the facility including maps and diagrams; (6)</td>
<td></td>
</tr>
<tr>
<td>(7) A complete copy of the SPCC Plan including amendments; (7)</td>
<td></td>
</tr>
<tr>
<td>(8) The causes of the spill, including failure analysis; (8)</td>
<td></td>
</tr>
<tr>
<td>(9) The corrective actions and/or countermeasures taken; (9)</td>
<td></td>
</tr>
<tr>
<td>(10) Additional preventive measures taken or contemplated; and (10)</td>
<td></td>
</tr>
<tr>
<td>(11) Other information as required by R.A. (11)</td>
<td></td>
</tr>
<tr>
<td>(c) All above information sent to applicable State agency.</td>
<td></td>
</tr>
<tr>
<td>(d & e) RA requirements for SPCC Plan amendment (Explain in Report).</td>
<td></td>
</tr>
<tr>
<td>(f) Appeal of amendments by facility</td>
<td></td>
</tr>
<tr>
<td>40 CFR 112.5 Amendment of SPCC Plans by the Owners or Operators</td>
<td></td>
</tr>
<tr>
<td>(a) Amendment (and implementation within 6 months) of changes to Plan.</td>
<td></td>
</tr>
<tr>
<td>(b) Three (3) year review and evaluation of SPCC Plan by management.</td>
<td></td>
</tr>
</tbody>
</table>
Amendments are certified by a Professional Engineer.

40 CFR 112.7 - Guidelines for the Preparation and Implementation of Spill Prevention Control and Countermeasure Plans

(First Paragraph)
- Full approval of management with authority to commit resources
- Discussion and implementation schedule of items to be installed.

(a) Description of spill events, including corrective actions.

(b) Direction, rate of flow, and quantity of potential oil spills.

(c) Secondary, containment and/or diversionary structures:
 (i) Dikes, berms or retaining walls sufficiently impervious; (i)
 (ii) Curbing; (ii)
 (iii) Culverting, gutters or other drainage systems; (iii)
 (iv) Weirs, booms or other barriers; (iv)
 (v) Spill diversion ponds; (v)
 (vi) Retention ponds; and/or (vi)
 (vii) Sorbent materials. (vii)

(d) If the installation of structure or equipment as listed in § 112.7(c) is not practicable as determined by the facility, the impracticability should be clearly demonstrated.

Describe impracticability:

The following should also be provided:

1. A strong oil spill contingency plan [40 CFR 109].
2. A written commitment of manpower, equipment and materials required to handle any quantity of oil discharged.

Describe Contingency Plan:

40 CFR 112.7 - Guidelines for the Preparation and Implementation of Spill Prevention Control and Countermeasure Plans (Continued)

(e)(1) Facility Drainage (onshore); (excluding production facilities)

(i) Drainage from diked storage areas have valves or other positive means to prevent an oil spill. (i)

(ii) Valves should be manual, open-and-closed design.

Retained stormwater from diked areas should be inspected before drainage [(e)(2)(iii)(B,C & D)]. (ii)

(iii) Plant drainage from undiked areas are equipped with either: Ponds, lagoons or catchment basins to retain oil; or

(iv) A diversion system at the discharge point that will contain a spill and return it to the facility.

(v) Where more than one drainage water treatment unit is used, the transfer between units should be by either: Natural hydraulic (gravity) flow; or Two “lift” pumps with at least one permanently installed.

Drainage will prevent oil from reaching navigable waters.

(e)(2) Bulk Storage Tanks (onshore): (excluding production facilities)
(i) Tank material/construction is compatible with fluid stored.

(ii) Secondary containment is provided for the largest single tank plus an allowance for precipitation. Dike walls and floor are “sufficiently impervious.”

(iii) Drainage of rainwater from diked areas, by-passing treatment, is accomplished according to the following:
 - (A) Normally the by-pass valve is sealed closed;
 - (B) The rainwater is inspected;
 - (C) The by-pass valve is opened/closed under supervision; and
 - (D) Records are kept of bypassing and drainage events.

40 CFR 112.7 - Guidelines for the Preparation and Implementation of Spill Prevention Control and Countermeasure Plans (Continued)

(iv) Buried metallic storage tank:
 - New tanks are coated and wrapped to reduce corrosion;
 - Cathodic protection is provided for new tanks as required;
 - Tanks are pressure tested on a scheduled basis.

(v) Partially buried metallic tanks are avoided unless adequate coating is provided for the buried portion.

(vi) Aboveground tanks are tested by one of the following methods:
 - Hydrostatic testing;
 - Visual inspection; and/or
 - Shell thickness testing (comparison records maintained).
 All bulk storage tanks are inspected periodically.

(vii) Internal heating coil leakage is controlled by the following:
 - (A) Monitoring the stream return or exhaust lines for oil;
 - Passing the stream lines through a separation system; or
 - (B) Installing external heating system.

(viii) Tanks are fail-safe engineered by one of the following:
 - (A) High liquid level alarms with an audible or visual signal;
 - (B) High liquid level pump cutoff devices;
 - (C) Direct signal between the tank gauger and pumping station;
 - (D) A fast response system to detect oil level such as digital computers, telepulse, direct visual gauges, or equal.
 - (E) Sensing devices should be inspected/tested periodically.

(ix) Plant effluent observed frequently to detect upsets.

(x) Oil leaks from tanks should be promptly corrected.

40 CFR 112.7 - Guidelines for the Preparation and Implementation of Spill Prevention Control and Countermeasure Plans (Continued)
(xi) Mobile or portable oil storage tanks should be properly located to prevent oil from reaching navigable waters. Secondary containment should be provided.

| (e)(3) Facility transfer operations, pumping, and in-plant process. |
|---|---|
| (i) Buried pipelines are wrapped/coated to reduce corrosion. |
| (ii) Pipeline terminal connections are capped or blank-flanged if not in service or in expansion and contraction. |
| (iii) Pipe supports are designed to minimize abrasion and corrosion and allow for expansion and contraction. |
| (iv) All aboveground pipelines are inspected periodically. |

| (e)(4) Facility tank car and tank truck loading/unloading rack. |
|---|---|
| (i) Loading/unloading procedures meet the minimum requirements of the Department of Transportation. |
| (ii) Where drainage does not flow into a catchment basin or a treatment facility, the rack area should have a drainage system with a containment volume greater than the largest compartment of any tank car or truck. |
| (iii) An interlocked warning light or physical barrier system or warning signs should be provided to prevent vehicular departure before disconnect of the transfer lines. |
| (iv) Drains and outlets on tank cars and tank trucks are inspected for leakage prior to filling and departure. |

| (e)(5) Oil production facilities (onshore). |
|---|---|

| (e)(6) Oil drilling and facilities (onshore). |
|---|---|

| (e)(7) Oil drilling, production or facilities (offshore). |
|---|---|

| (e)(8) Inspections and records. |
|---|---|

The required inspections should follow written procedures and should be included in the SPCC Plan.

| 40 CFR 112.7 - Guidelines for the Preparation and Implementation of Spill Prevention Control and Countermeasure Plans (Continued) |
|---|---|

| (e)(9) Security (excluding oil production facilities). |
|---|---|

(i) Plans handling, processing and storing oil should be fenced. Entrance gates should be locked and/or guarded when the plant is unattended or not in production.

(ii) Any valves which permit outflow of a tank's contents should be locked closed when in non-operating or non-standby status.

(iii) Starter controls on all oil pumps in non-operating or non-standby status should be locked, electrically isolated in the "off" position, or accessible only to authorized personnel.

(iv) The loading/unloading connections of oil pipelines should be capped or blank-flanged when not in service or on standby status for an extended time period.

| (v) Facility lighting should be commensurate with the |
type and location of the facility. Lighting should be adequate to discover spills and to prevent acts of vandalism.

(e)(10) Personnel, training and spill prevent procedures.

(i) Personnel are properly instructed in the operation and maintenance of the equipment used to prevent oil discharges and the pollution control laws, rules and regulations.

(ii) A person accountable for oil spill prevention should be designated within the Plan.

(iii) Spill prevention briefings for operating personnel should be conducted on a scheduled, periodic basis.

SPCC CERTIFICATIONS

I hereby certify that I have examined the facility, and being familiar with the provisions of 40 CFR Part 112, attest that this SPCC Plan has been prepared in accordance with good engineering practices.

ENGINEER: ______________________________ P.E.

SIGNATURE: ____

REGISTRATION NUMBER: __________________________________

STATE: __________________________________

DATE:

CERTIFICATION OF THE APPLICABILITY OF THE SUBSTANTIAL HARM CRITERIA (As taken from 40 CFR Part 112, Appendix C, Attachment C-II)

1. Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons?

 Yes ------ No -----

2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground oil storage tank area?

 Yes ------ No -----

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at distance (as calculated using the appropriate formula in Attachment C-III to this appendix or a comparable formula) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments? For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments" (see Appendix E to this part, section 10, for availability) and the applicable Area Contingency Plan.

 Yes ------ No -----
4. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to this appendix or a comparable formula1) such that a discharge from the facility would shut down a public drinking water intake2? If a comparable formula is used documentation of the reliability and analytical soundness of the comparable formula must be attached to this form. 2 For the purposes of 40 CFR part 112, public drinking water intakes are analogous to public water systems as described at 40 CFR 143.2(c).

Yes No -----

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil spill in an amount greater than or equal to 10,000 gallons within the last 5 years?

6. Yes ----- No -----

Appendix 2
Implementation Schedule for Plan Elements not Currently in Place (Example)

<table>
<thead>
<tr>
<th>Activity Description</th>
<th>Planned Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install 110% secondary containment for the waste oil AST</td>
<td></td>
</tr>
<tr>
<td>Repair cracks in secondary containment for fuel oil AST</td>
<td></td>
</tr>
<tr>
<td>Perform / document inspections of hazardous materials storage areas</td>
<td></td>
</tr>
<tr>
<td>Installation of stormwater management basins</td>
<td></td>
</tr>
<tr>
<td>Provide training to facility personnel</td>
<td></td>
</tr>
<tr>
<td>Purchasing of additional spill response equipment</td>
<td></td>
</tr>
</tbody>
</table>

Appendix 3
Spill Documentation Form

Page 1 of 2

Name:
Position:
Phone Numbers, Day: Evening:
PennDOT District:
Address: City:
State: Pennsylvania Zip:
Were Materials Discharged (Y/N)? Confidential (Y/N)?
Meeting Federal Obligations to Report (Y/N)?
Date Called: Time Called:

Incident Description
Source and/or Cause of Incident:

Date of Incident: Time of Incident:
Incident Address/Location:
Nearest City: State: Pennsylvania County: Zip:

Container Type:
Tank Oil Storage Capacity: Units of Measure:
Facility Oil Storage Capacity: Units of Measure:

Facility Latitude: Facility Longitude:

Spill Documentation Form
Material Released
Quantity discharged and quantity discharged into a water body

Response Action
Actions Taken to Correct, Control or Mitigate Incident:

Impact
Number of Injuries: Number of Deaths:
Were there Evacuations (Y/N)? Number Evacuated:
Was there any Damage (Y/N)? Damage in Dollars (approximate):
Medium Affected: Air Water Soil
Description:
More Information about Medium:

Additional Information
Any Information about the incident not reported elsewhere in the report:

Caller Notifications
EPA(Y/N)? USCG(Y/N)? State (Y/N)? Other (Y/N)?
Time/Date Time/Date Time/Date Time/Date

Appendix 4
Stormwater Pollution Prevention Best Management Practices
The following section describes general stormwater management controls and best Management Practices (BMPs) which should be implemented at the facility, where appropriate.
• Practice good housekeeping, preventative maintenance, and sediment erosion control;
• Employ spill prevention practices;
• Perform inspections required to evaluate the effectiveness of the BMPs;
• Provide employee training to implement the BMPs; and
• Record keeping that complies with regulatory reporting requirements.
• Parking lots shall be swept when necessary to remove debris.
• Maintain landscaped areas to reduce potential soil erosion.
• Add landscaped areas to protect soils from erosion.
• Eliminate, to the extent possible, authorized non-storm-water discharges.
• Waste disposal bins should be kept covered to prevent storm-water contact.
• Eliminate or cover the outdoor storage area located on the east side of the building.
• Wipe up drips, spills, or leaks as soon as possible.
• Never dump or dispose of any chemicals, fuels, solvents, or vehicle related fluids into a sink or floor drain.
• Place a spill kit at or near the maintenance shop should spills occur during loading and unloading activities.
• Maintain the spill kit and supplies of absorbents at or near the vehicle maintenance shop.
• Clean interior trench drains as needed.
• Any hazardous material stored outside shall have secondary containment and be covered.
• Clean oil/water separator at least once a year or as needed.
• Any liquid waste stream contained in drums shall be placed on a secondary containment pallet. This includes any hazardous or non-hazardous waste stream.
• Prioritize repairs and use drip pans for vehicles parked outside of the vehicle maintenance shop awaiting
• No discharge to the storm sewer.
• Wash vehicles only in designated wash areas.
• Minimize the use of detergents and eliminate the use of emulsifying agents that interfere with the function of the oil/water separator.
• Routinely observe the vehicle-wash work procedures to eliminate any discharges to the storm sewer. Recommend, as necessary, procedures to eliminate discharges.

Appendix 5
Response Equipment Inventory and Storage Area Inspection Checklists

Response Equipment Inventory and Inspection Checklist

1. Inventory (item and quantity):

2. Storage Location:

3. Accessibility (time to access and respond):

4. Operational Status and Condition:

5. Actual Use/Testing (last test date and frequency of testing):

6. Shelf Life (present age, expected replacement date):

Response Equipment Inspection Log

<table>
<thead>
<tr>
<th>Inspector</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Storage Area Checklists

1. Dike or berm system:
 - Level of precipitation in dike/available capacity
 - Operational status of drainage valves
 - Dike or Berm permeability
 - Debris
 - Erosion
 - Permeability of the earthen floor of diked area
 - Location/status of pipes, inlets, drainage beneath tanks, etc.

2. Secondary containment:
Cracks
Discoloration
Presence of spilled or leaked material (standing liquid)
Corrosion
Valve conditions

3. Retention and drainage ponds:
 Erosion
 Available capacity
 Presence of spilled or leaked material
 Debris
 Stressed vegetation

Inspector’s name
Date:

Facility name/ District

Appendix 6
Training Documentation Form

Date of Training ________

Topics covered (attach agenda and copies of handouts, minutes, etc).
__
__
__

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>