1. Use this series of standard drawings to provide a rapid means of producing design drawings. These drawings are intended for use in the selection of an appropriate substructure for a specific bridge design. The designer should be aware of the specific information provided by these drawings and adapt them to fit the project needs.

2. The substructure designs provided in this series utilize hardwood glulam timber components as basic elements of the superstructure. Designers should be aware of the limitations of using these components and select appropriate substructures for specific applications. The designer should be able to adapt the standards to fit most single span applications.

3. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

4. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

5. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

6. Use the post and rails, or safety parapets (solid sawn lumber, glulam, or steel) which are shown. Use the first bridge superstructure, glulam beam, for spans 18'-0" to 98'-5". Use the longitudinal panel or steel beam type, if feasible.

7. Give attention to the substructure support for vertical and lateral shear. Provide adequate support to resist the effects of wind and vehicular loads.

8. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

9. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

10. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

11. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

12. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

13. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

14. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

15. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

16. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

17. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

18. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

19. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

20. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

21. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

22. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

23. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

24. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

25. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

26. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

27. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

28. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

29. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.

30. The design of substructures is based on the material parameters and soil conditions shown in Figure 1, Sheet 1. Design engineers should consult the following tables for soil conditions and substructure components. Provide adequate information for substructures to be used.
1. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

2. NOMINAL RESISTANCE AND MODULUS OF ELASTICITY VALUES OBTAINED BY ADJUSTING WET-USE BASE RESISTANCE VALUES WITH APPLICABLE MODULUS OF ELASTICITY FACTORS ACCORDING TO AASHTO 8.4.4.

3. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

4. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

5. NOMINAL RESISTANCE AND MODULUS OF ELASTICITY VALUES OBTAINED BY ADJUSTING WET-USE BASE RESISTANCE VALUES WITH APPLICABLE MODULUS OF ELASTICITY FACTORS ACCORDING TO AASHTO 8.4.4.

6. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

7. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

8. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

9. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

10. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

11. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

12. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

13. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

14. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

15. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

16. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

17. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

18. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

19. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

20. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

21. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

22. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

23. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.

24. DEFLECTION LESS THAN OR EQUAL TO SPAN/425.

25. DEFLECTION LESS THAN OR EQUAL TO SPAN/425 AND EXTREME RELATIVE DEFLECTION TO AASHTO 8.4.4. ASSUME MOISTURE CONTENT > 16%.