L BEARING

BEAM NOTCH

TYP. LONGITUDINAL

WITHOUT BEAM NOTCH

ADJACENT BOX BEAM

ADJACENT BOX BEAM

END BLOCK REINFORCEMENT

ADJACENT BOX BEAM NOTES:

1. FOR ALTERNATE BOX BLOCK REINFORCEMENT DETAIL, SEE SHEET 9.

2. #4 BARS, A1, WITH 21" MAXIMUM SPACING ARE SHOWN AS INTERFACE SHEAR REINFORCEMENT. IF THE DESIGN REQUIRES A GREATER SHEAR REINFORCEMENT, #5 WITH A 21" MAXIMUM SPACING OR #6 WITH A 29" MAXIMUM SPACING, SPECIFY THE APPROPRIATE MINIMUM LAP SPLICE LENGTH.

3. OMIT SHEAR KEY ON THE FASCIA SIDE OF BEAMS.

4. FOR TYPICAL CORNER BLOCKOUT DETAIL, SEE BC-775M.

6. #4 BARS, A1, WITH 21" MAXIMUM SPACING ARE SHOWN AS INTERFACE SHEAR REINFORCEMENT. IF THE DESIGN REQUIRES A GREATER SHEAR REINFORCEMENT, #5 WITH A 21" MAXIMUM SPACING OR #6 WITH A 29" MAXIMUM SPACING, SPECIFY THE APPROPRIATE MINIMUM LAP SPLICE LENGTH.

LEGEND:

1. #4 REINFORCEMENT IS SHOWN AS IS CONSIDERED A STIRRUP ONLY IN THE END BLOCK AREA. IF THE DESIGN REQUIRES A GREATER SHEAR RESISTANCE, #5 WITH A 21" MAXIMUM SPACING OR #6 WITH A 29" MAXIMUM SPACING, SPECIFY THE APPROPRIATE MINIMUM LAP SPLICE LENGTH.

2. TO BE DETAILLED ON THE SHOP DRAWINGS.

3. OMIT FOR OTHERS.

ADJACENT BOX BEAM NOTES:

1. FOR ALTERNATE BOX BLOCK REINFORCEMENT DETAIL, SEE SHEET 9.

2. #4 BARS, A1, WITH 21" MAXIMUM SPACING ARE SHOWN AS INTERFACE SHEAR REINFORCEMENT. IF THE DESIGN REQUIRES A GREATER SHEAR REINFORCEMENT, #5 WITH A 21" MAXIMUM SPACING OR #6 WITH A 29" MAXIMUM SPACING, SPECIFY THE APPROPRIATE MINIMUM LAP SPLICE LENGTH.

3. OMIT SHEAR KEY ON THE FASCIA SIDE OF BEAMS.

4. FOR TYPICAL CORNER BLOCKOUT DETAIL, SEE BC-775M.

6. #4 BARS, A1, WITH 21" MAXIMUM SPACING ARE SHOWN AS INTERFACE SHEAR REINFORCEMENT. IF THE DESIGN REQUIRES A GREATER SHEAR RESISTANCE, #5 WITH A 21" MAXIMUM SPACING OR #6 WITH A 29" MAXIMUM SPACING, SPECIFY THE APPROPRIATE MINIMUM LAP SPLICE LENGTH.

8. MIN. 3" BEYOND BEAM NOTCH IF PRESENT, AND EXTEND FOR AT LEAST 1' TO PROVIDE SPLITTING RESISTANCE REINFORCEMENT IN ACCORDANCE WITH DM-4 D5.10.10.1.

9. #6 WITH 21" MAXIMUM SPACING IS SHOWN FOR einfacher SPALT RESISTANCE REINFORCEMENT IN ACCORDANCE WITH DM-4 D5.10.10.1.

ADJACENT BOX BEAM NOTES:

1. FOR ALTERNATE BOX BLOCK REINFORCEMENT DETAIL, SEE SHEET 9.

2. #4 BARS, A1, WITH 21" MAXIMUM SPACING ARE SHOWN AS INTERFACE SHEAR REINFORCEMENT. IF THE DESIGN REQUIRES A GREATER SHEAR REINFORCEMENT, #5 WITH A 21" MAXIMUM SPACING OR #6 WITH A 29" MAXIMUM SPACING, SPECIFY THE APPROPRIATE MINIMUM LAP SPLICE LENGTH.

3. OMIT SHEAR KEY ON THE FASCIA SIDE OF BEAMS.

4. FOR TYPICAL CORNER BLOCKOUT DETAIL, SEE BC-775M.

6. #4 BARS, A1, WITH 21" MAXIMUM SPACING ARE SHOWN AS INTERFACE SHEAR REINFORCEMENT. IF THE DESIGN REQUIRES A GREATER SHEAR RESISTANCE, #5 WITH A 21" MAXIMUM SPACING OR #6 WITH A 29" MAXIMUM SPACING, SPECIFY THE APPROPRIATE MINIMUM LAP SPLICE LENGTH.

8. MIN. 3" BEYOND BEAM NOTCH IF PRESENT, AND EXTEND FOR AT LEAST 1' TO PROVIDE SPLITTING RESISTANCE REINFORCEMENT IN ACCORDANCE WITH DM-4 D5.10.10.1.

9. #6 WITH 21" MAXIMUM SPACING IS SHOWN FOR einfacher SPALT RESISTANCE REINFORCEMENT IN ACCORDANCE WITH DM-4 D5.10.10.1.
COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION
BUREAU OF PROJECT DELIVERY

STANDARD
BOX BEAM REINFORCEMENT DETAILS
STRAND PATTERN AND BEAM DAP

TYPICAL STRAND CONFINEMENT ALL BEAMS

STRAND CONFINEMENT NOTES:
1. For limits of Strand Confinement Requirements, refer to Design Manual, Part 4, D5.10.10.2.
2. Do not place more than one column of prestressing strands in the webs.
3. Do not place prestressing strands at corner location in bottom row.
4. Ensure even bearing pressure on the pads.
5. ENSURE INSPECTABILITY OF BEARING PAD.
6. The maximum Dap thickness is 1".
7. Partial width Daps are not permitted.
8. ENSURE EVEN BEARING PRESSURE ON THE PADS.
9. Ensure that all concrete cover requirements on steel, concrete, and stirrups are satisfied when using beam Daps to modify the bottom of confinement reinforcement and prestressing strands are provided between the bottom of the beam (without Dap) is on the skew, the beam seat must slope to 10. When Beam Daps are used and the beam (and bearing pad) is in the deck, the beam seat must slope to ensure even bearing pressure on the pads.

TYPICAL STRAND PATTERN ALL BEAMS

STRAND PATTERN NOTES:
1. T1 is Dap thickness at end of beam for higher consideration of beam.
2. T2 is Dap thickness at centerline of bearing.
3. T3 is defined as the Dap thickness based on the slope of the beam due to the grade and camber.
4. Maximum cam for use of Dapping is based on limiting the maximum Dap thickness to 1/2 and maintaining a minimum confinement reinforcement in the proposed Dap Dapping area.
5. T1 is minimum Dap thickness of T. T2 must be provided between the bottom of the beam and Dap area.
6. The maximum Dap thickness is 1/2.
7. ENSURE EVEN BEARING PRESSURE ON THE PADS.
8. ENSURE INSPECTABILITY OF BEARING PAD.
9. Ensure that all concrete cover requirements on steel, concrete, and stirrups are satisfied when using beam Daps to modify the bottom of confinement reinforcement.
10. When Beam Daps are used and the beam (and bearing pad) is on the deck, the beam seat must slope to ensure even bearing pressure on the pads.

BOX BEAM DAP DESIGN PARAMETERS

MAXIMUM DAP DEPTH (T3)

<table>
<thead>
<tr>
<th>DAP AREA</th>
<th>MAXIMUM GAP IN DAP DEPTH (T3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX BEAM</td>
<td>1"</td>
</tr>
<tr>
<td>TYPICAL</td>
<td>1/2"</td>
</tr>
</tbody>
</table>

BEAM DAP NOTES:

1. T1 is Dap thickness at end of beam for higher consideration of beam.
2. T2 is Dap thickness at centerline of bearing.
3. T3 is defined as the Dap thickness based on the slope of the beam due to the grade and camber.
4. Maximum cam for use of Dapping is based on limiting the maximum Dap thickness to 1/2 and maintaining a minimum confinement reinforcement in the proposed Dap Dapping area.
5. T1 is minimum Dap thickness of T. T2 must be provided between the bottom of the beam and Dap area.
6. The maximum Dap thickness is 1/2.
7. ENSURE EVEN BEARING PRESSURE ON THE PADS.
8. ENSURE INSPECTABILITY OF BEARING PAD.
9. Ensure that all concrete cover requirements on steel, concrete, and stirrups are satisfied when using beam Daps to modify the bottom of confinement reinforcement.
10. When Beam Daps are used and the beam (and bearing pad) is on the deck, the beam seat must slope to ensure even bearing pressure on the pads.

Recommended APR.29, 2016
Recommended APR.29, 2016
Sheet 3 of 8
BD-661M

DIRECTOR, BUR. OF PROJECT DELIVERY

CHIEF BRIDGE ENGINEER
STANDARD BD-661M

COMMONWEALTH OF PENNSYLVANIA

DEPARTMENT OF TRANSPORTATION

OVERHANG LIMITED

ADJACENT BOX BEAMS

SUPPORTING BARRIER

CONCRETE DECK

INCREASE THICKNESS AS REQUIRED TO PROVIDE MINIMUM REQUIRED COVER (RAKED FINISH) & V-NOTCH CONSTR. JT.

LEGEND

1. FOR BEAM DIMENSIONS AND BEAM REINFORCEMENT, SEE SHEET 2.

BARRIER

ADJACENT BOX BEAMS

SIDEWALK WIDTH

(OVER UNDERPASS (OTHER CONDITIONS) FROM CON. BARRIER **

CLR. MIN.

REAR FACE

BARRIER/SIDEWALK NOTES:

1. FOR GEOMETRIC AND REINFORCEMENT DETAILS OF THE BRIDGE BARRIERS NOT SHOWN, SEE BD-601M.

2. FOR WATERPROOFING DETAIL AT SHEAR LEGS OF THE BARRIER BAR TO BE EMBEDDED ENTIRELY WITHIN ONE BEAM. USE ONLY WHEN ROADWAY AND SIDEWALK WIDTHS PERMIT THE HORIZONTAL EMBEDMENT LENGTH TO HALF THE SPACING SHOWN.

3. ALL REINFORCEMENT SHOULD BE EPOXY COATED IN ACCORDANCE WITH PUBLICATION 408, SECTION 709.

4. MAINTAIN MIN. EMBEDMENT LENGTH OF 1'-2" FROM TOP OF BEAM TO END OF REINFORCEMENT MEASURED ALONG OUTSIDE EDGE OF THE REINFORCEMENT.

5. DIMENSIONS ALONG CURVED PORTIONS OF BAR ARE MEASURED ALONG THE CURVATURE.

6. V-NOTCH CONSTRUCTION JT.

7. FOR OVERHANGS 1" MIN. FOR OVERHANGS 2" CLR.

8. WHEN AUTHORIZED BY THE DISTRICT TRAFFIC ENGINEER.

9. BARRIERS WITH CURB DRAIN.

10. BARRIERS WITH BAR DRAIN.

11. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

12. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

13. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

14. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

15. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

16. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

17. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

18. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

19. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

20. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

21. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

22. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

23. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

24. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

25. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

26. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

27. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

28. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

29. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

30. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

31. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

32. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

33. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

34. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

35. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

36. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

37. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

38. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

39. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

40. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

41. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

42. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

43. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

44. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

45. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

46. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

47. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

48. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

49. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

50. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

51. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

52. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

53. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

54. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

55. DRAIN RUNNER THROUGH CONC. BARRIER WITH BAR DRAIN. **

REINFORCEMENT detail

FOR BARRIERS WITH TYPICAL SIDEWALK

* TYPICAL BARRIER SHOWN. ALTERNATE BARRIER IS SIMILAR.

1. DIMENSIONS ALONG CURVED PORTIONS OF BAR ARE MEASURED ALONG THE CURVATURE.

2. V-NOTCH CONSTRUCTION JT.

3. FOR OVERHANGS 1" MIN. FOR OVERHANGS 2" CLR.

4. MAINTAIN MIN. EMBEDMENT LENGTH OF 1'-2" FROM TOP OF BEAM TO END OF REINFORCEMENT MEASURED ALONG OUTSIDE EDGE OF THE REINFORCEMENT.

5. DIMENSIONS ALONG CURVED PORTIONS OF BAR ARE MEASURED ALONG THE CURVATURE.

6. V-NOTCH CONSTRUCTION JT.

7. FOR OVERHANGS 1" MIN. FOR OVERHANGS 2" CLR.

8. MAINTAIN MIN. EMBEDMENT LENGTH OF 1'-2" FROM TOP OF BEAM TO END OF REINFORCEMENT MEASURED ALONG OUTSIDE EDGE OF THE REINFORCEMENT.

9. DIMENSIONS ALONG CURVED PORTIONS OF BAR ARE MEASURED ALONG THE CURVATURE.

10. V-NOTCH CONSTRUCTION JT.

REINFORCEMENT BAR NOTES

1. REINFORCEMENT BAR DIMENSIONS ARE OUT TO OUT OF BAR.

2. COVER FOR TRANSVERSE DECK MAY RESULT IN INCREASED ABOVE GUTTERLINE ELEVATION.

3. REINFORCEMENT BAR DIMENSIONS ARE OUT TO OUT OF BAR.

4. MAINTAIN MIN. EMBEDMENT LENGTH OF 1'-2" FROM TOP OF BEAM TO END OF REINFORCEMENT MEASURED ALONG OUTSIDE EDGE OF THE REINFORCEMENT.

5. DIMENSIONS ALONG CURVED PORTIONS OF BAR ARE MEASURED ALONG THE CURVATURE.

6. V-NOTCH CONSTRUCTION JT.

7. FOR OVERHANGS 1" MIN. FOR OVERHANGS 2" CLR.

8. MAINTAIN MIN. EMBEDMENT LENGTH OF 1'-2" FROM TOP OF BEAM TO END OF REINFORCEMENT MEASURED ALONG OUTSIDE EDGE OF THE REINFORCEMENT.
ADJACENT BOX BEAM SUPPORTING BARRIERS/SIDEWALK NOTES:
1. FOR BEAM DIMENSIONS AND BEAM REINFORCEMENT, SEE SHEET 2.
2. DIMENSIONS ALONG CURVED PORTIONS OF BAR ARE 1'-4" MIN. FOR SPACING, 8" MAX. FOR TURNS.
3. ALL REINFORCEMENT SHOULD BE EPOXY COATED IN ACCORDANCE WITH PUBLICATION 408, SECTION 709.

REINFORCEMENT BAR NOTES:
1. REINFORCEMENT BAR DIMENSIONS ARE OUT TO OUT OR BAR.
2. DIMENSIONS ALONG CURVED PORTIONS OF BAR ARE DECREASED ALONG THE OUTSIDE EDGE.
3. ALL REINFORCEMENT SHOULD BE EPOXY COATED IN ACCORDANCE WITH PUBLICATION 408, SECTION 709.

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION

STANDARD
BOX BEAM REINFORCEMENT DETAILS
ADJACENT BOX BEAM

BUREAU OF PROJECT DELIVERY
DIRECTOR, BUR. OF PROJECT DELIVERY
APR. 29, 2016

RECOMMENDED APR. 29, 2016
RECOMMENDED APR. 29, 2016
SHEET 5 OF 8
BD-661M
SPREAD BOX BEAM NOTES:
1. SEE THIS SHEET FOR ALTERNATE END BLOCK REINFORCEMENT DETAIL.
2. #4-GREY, A1, WITH 21" MAXIMUM SPACING AS SHOWN AS INTERFACE SHEAR REINFORCEMENT. IF THE DESIGN REQUIRES A LARGER SHEAR REINFORCEMENT, #4 WITH A 21" MINIMUM SPACING MAY BE USED INDICATING THE APPROPRIATE MINIMUM LIFT FOR INSTALLATION.
3. FOR TYPICAL CORNER BLOCKOUT DETAIL, SEE BC-775M.
4. IF THE 3" SPACING OF THE STRIPES AT THE END OF THE BEAM IS REQUIRED, TO DETERMINE THE SPACING SHOWN IN THE END BLOCK REINFORCEMENT DETAIL, TO SATISFY THE SPLITTING RESISTANCE REQUIREMENT DESCRIBED IN DM-4 D5.10.10.1, ALTERNATE A1 AND A2 WITH AS TO THE END OF THE 3" SPACING SPACING.
5. FOR LEGEND NOTES, SEE LEGENDS ON SHEETS 1 AND 2.

SPREAD BOX BEAM

SPLICING DETAIL

ALTERNATE END BLOCK REINFORCEMENT

PLAN - SPREAD BOX BEAM

BEAM REINFORCEMENT

SECTION G-G

END BLOCK REINFORCEMENT

SPREAD BOX BEAM

WITH BEAM NOTCH

END BLOCK AREA

8" MAXIMUM SPACING

6" MAXIMUM SPACING

7" MIN.

REINFORCEMENT DETAIL TO SATISFY THE SPLITTING RESISTANCE INTERFACE SHEAR REINFORCEMENT. IF THE DESIGN REQUIRES A GREATER SHEAR REINFORCEMENT, #5 WITH A 21" MAXIMUM SPACING MAY BE USED INDICATING THE APPROPRIATE LIFT FOR INSTALLATION.

SPREAD BOX BEAM WITHOUT BEAM NOTCH

VIEW E-E

END ELEVATION

WITH BEAM NOTCH

VIEW F-F

WITH BEAM NOTCH

VIEW E-E

END ELEVATION

WITHOUT BEAM NOTCH

VIEW F-F

WITHOUT BEAM NOTCH

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION
BUREAU OF PROJECT DELIVERY

STANDARD

BOX BEAM REINFORCEMENT DETAILS

SPREAD BOX BEAM
PLANK BEAM
(COMPOSITE)

TYPICAL STRAND PATTERN
PLANK BEAM

PLANK BEAM NOTE:
1. IF THE 3" SPACING OF THE STIRRUPS AT THE END OF THE BEAM IS REQUIRED TO GO BEYOND THAT SHOWN TO SATISFY THE SPLITTING RESISTANCE REQUIREMENT IN DM-4.25.10.10.1, CONTINUE THE 3" STIRRUP SPACING.

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION
BUREAU OF PROJECT DELIVERY
STANDARD BOX BEAM REINFORCEMENT DETAILS
PLANK BEAM

PLAN - 12" DEEP PLANK BEAM
TABLE A
BEAM NOTCH DEPTHS FOR COMPOSITE ADJACENT BOX BEAMS

<table>
<thead>
<tr>
<th>APPROACH SLAB TYPE</th>
<th>BACKWALL</th>
<th>BEAM NOTCH DEPTHS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>A/A</td>
<td>1'</td>
<td>SEE NOTE 1</td>
</tr>
<tr>
<td>YES</td>
<td>1'</td>
<td>SEE NOTE 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1'</td>
<td>SEE NOTE 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1'</td>
<td>SEE NOTE 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1'</td>
<td>SEE NOTE 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>SEE NOTE 6</td>
<td></td>
</tr>
</tbody>
</table>

BEAM NOTCH NOTES:
1. REFER TO BD-628M FOR APPROACH SLAB DETAILS.
2. SUPPORT APPROACH SLAB ON ABUTMENT FOR 17", 21", AND 24" DEEP BEAMS.
3. SUPPORT APPROACH SLAB ON ABUTMENT FOR 17", 21", 24", AND 27" DEEP BEAMS.
4. BACKWALL PLACED UNDER APPROACH SLAB.
5. TYPE 3 AND 4 APPROACH SLABS ARE NOT PERMITTED FOR BEAM DEPTHS LESS THAN 33".
6. PROVIDE APPROACH SLAB IN ACCORDANCE WITH RC-23M FOR BRADD BRIDGES.
7. OMIT BEAM NOTCH FOR PLANK BEAMS AND PIER ENDS FOR BEAMS MADE CONTINUOUS.
8. BEAM NOTCH MAY BE OMITTED WHEN PAVING NOTCH IS NOT REQUIRED.
9. ADJUST BEAM NOTCHES AS REQUIRED TO ACCOMMODATE EXPANSION DAMS.

TABLE B
BEAM NOTCH DEPTHS FOR SPREAD BOX BEAMS

<table>
<thead>
<tr>
<th>APPROACH SLAB TYPE</th>
<th>BACKWALL</th>
<th>BEAM NOTCH DEPTHS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>1'</td>
<td>SEE NOTE 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1'</td>
<td>SEE NOTE 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1'</td>
<td>SEE NOTE 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1'</td>
<td>SEE NOTE 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>SEE NOTE 6</td>
<td></td>
</tr>
</tbody>
</table>

BEAM NOTCH NOTES:
1. REFER TO BD-628M FOR APPROACH SLAB DETAILS.
2. SUPPORT APPROACH SLAB ON ABUTMENT FOR 17" AND 21" DEEP BEAMS.
3. SUPPORT APPROACH SLAB ON ABUTMENT FOR 17", 21", 24", AND 27" DEEP BEAMS.
4. BACKWALL PLACED UNDER APPROACH SLAB.
5. TYPE 3 AND 4 APPROACH SLABS ARE NOT PERMITTED FOR BEAM DEPTHS LESS THAN 39".
6. PROVIDE APPROACH SLAB IN ACCORDANCE WITH RC-23M FOR BRADD BRIDGES.
7. OMIT BEAM NOTCH FOR PLANK BEAMS AND PIER ENDS FOR BEAMS MADE CONTINUOUS.
8. BEAM NOTCH MAY BE OMITTED WHEN PAVING NOTCH IS NOT REQUIRED.
9. ADJUST BEAM NOTCHES AS REQUIRED TO ACCOMMODATE EXPANSION DAMS.