The Do’s and Don’ts of Painting Bolted Connections

Mid-Atlantic Quality Assurance Workshop
February 7, 2017

Kenneth A. Trimber
KTA-Tator, Inc.
Bolted Connection

Learning Objectives

• Understand the coefficient of friction and tension creep testing used to certify coatings for slip-critical bolted connections

• Recognize the challenges associated with using coatings in slip-critical bolted connections

• Recognize common approaches for addressing bolt holes (to paint or not to paint)

• Identify approaches to cleaning and painting galvanized and black fasteners
Agenda

- Slip Coefficient and Tension Creep Testing Processes
- Slip Classification and Discussion of Test Results
- Painting of Bolt Holes
- Cleaning and Painting of Fasteners
RCSC Specification

- Research Council on Structural Connections (RCSC)
- Specification for Structural Joints Using High-Strength Bolts, August 1, 2014 (with April 2015 errata)
- Currently under review
COF and Tension Creep Testing

• Coefficient of Friction (COF) Testing
 - Determines the mean slip coefficient of a coating applied to the faying surfaces of bolted connections under short-term static loading – each test run ~7 min.

• Tension Creep Testing
 - Tendency of a coating to undergo deformation under sustained service loading – 1,000 hrs (42 days).
 - Includes the effect of a loss in clamping force due to compression or creep deformation of the coating.

• Specimens must pass COF testing before being subjected to Tension Creep testing
RCSC Certification Classes

• Class A Certification
 – minimum slip coefficient of 0.30
• Class B Certification
 – minimum slip coefficient of 0.50
• Class C Certification
 – minimum slip coefficient of 0.35
Test Plates for COF

- Flat carbon steel (no raised edges, protruding defects or warp) – typically cold rolled to achieve greater flatness.
- 5/8” x 4” x 4” with a 1” hole drilled 1 ½” from one of the sides.
- One 5/8” x 4” edge (top edge in the photo) is machined smooth.
Test Plates for COF (con’t)

• Each plate is abrasive blast cleaned and both sides are coated with the test material.
• Thickness is 2 mils greater than the maximum that will be applied to the joint (typically 2 mils greater than the manufacturer’s recommended maximum).
• Certification does not include the extra 2 mils.
• 3 plates are sandwiched together for each test.
COF Testing
COF Testing (con’t)

- Threaded rod, not bolt, inserted is through the plates – secured with nut.
- Clamping force applied using a hydraulic cylinder 49 ± 0.5 kips (based on min. clamping force of A490 bolt).
COF Testing (con’t)

• Vertical load applied to the center plate until slip occurs – rate not to exceed 25 kips/min
• Each test ~7 minutes
• Testing performed on 5 replicates (3 new test plates per replicate)
• COF is the average of the 5 runs
 - Class B - minimum slip coefficient of 0.50
 - Class B - minimum slip coefficient of 0.30
Test Plates for Tension Creep

- Flat carbon steel (no raised edges, protruding defects or warp) – typically cold rolled to achieve greater flatness.
- 5/8” x 4” x 7” with a 1” hole drilled 1 ½” from both of the 4” sides.
Test Plates for Tension Creep (con’t)

- The degree of blast cleaning and DFT of the test material is the same as the COF plates.
- Only $\frac{1}{2}$ of each plate is coated on both sides – the remaining half is left as bare blast cleaned steel.
Test Plates for Tension Creep (con’t)

- 9 plates are required for each test.
- 3 sets of 3 replicates assembled in a chain.
- Painted surfaces are matched to painted surfaces; unpainted matched to unpainted.
- Only one chain is required for each test.
Tension Creep Testing
Tension Creep Testing (con’t)

- Painted surfaces secured with 7/8” diameter A490 bolts.
- Unpainted surfaces are connected using loose pin bolts and are not part of the test (in bearing).
Tension Creep Testing (con’t)

- A load is applied to the chain in tension and held for 1,000 hours (approximately 42 days).
- After 1,000 hours, the tension is increased over the course of a few minutes to the final load.
- The loads are calculated from formulas based on the targeted slip coefficient classification and the average clamping force of the samples.
- For Class B, the locked tension (1,000 hours) is a minimum of 32.7 kips and a minimum of 49 kips for final tension.
Tension Creep Testing (con’t)

- Movement of the center plates is monitored relative to the outside plates in tenths of a mil.
- Creep deformation >5 mils for any sample during the 1,000 locked tension is a failure for the slip coefficient used.
- If deformation of each sample after 1,000 hours is <5 mils, testing proceeds to the final tension.
- The average deformation after final tension must be <15 mils for the three specimens.
Slip Coefficient/ Tension Creep Classes

• Class A Certification (minimum slip COF 0.30)
 – clean mill scale typically meets Class A

• Class B Certification (minimum slip COF 0.50)
 – bare abrasive blast cleaned steel, most inorganic zinc primers, and some organic zinc primers typically meet Class B

• Class C Certification (minimum slip COF 0.35)
 – roughened galvanizing typically meets Class C
Discussion Point 1
Thermal Spray Coatings (TSC)

• FHWA study (Slip and Creep of Thermal Spray Coatings, Publication No. FHWA-HRT-14-083) September, 2014
 – Tested sealed and unsealed 100% zinc and 85/15 (zinc/ aluminum)

• Unsealed TSC
 • slip coefficient >0.75
 • meets Class B

• Sealed TSC
 • slip coefficient 0.41 (zinc) and 0.44 (85/15)
 • does not meet Class B
Discussion Point 2
Certificate of Testing

- Certification
 - The certificate is based on a specific product, dry film thickness, thinner amount, and curing time.
 - The same product is applied to both faying surfaces.
 - Specifications often require a different primer thickness in the joints compared to the remainder of the structure to comply with the maximum DFT on the certification.
Discussion Point 3
Coating Curing Times

- The test material is cured according to the manufacturer’s requirements prior to assembly and testing.
- The RCSC specification states that research has indicated “that all curing effectively ceased at the time the joint was assembled and paint that was not fully cured at that time acted as a lubricant. The slip resistance of a joint that was assembled after a time less than the curing time used in the qualifying tests was severely reduced. Thus, the curing time prior to mating the faying surfaces is an essential parameter to be specified and controlled during construction.”
Discussion Point 4
Disassembling Joints to Allow Cure

- If connections are made prior to achieving full cure, can they be disassembled, allowed to cure, and reassembled?
- No, once assembled, the uncured coatings in the mating surfaces will stick together and be damaged upon disassembly.
- If there is a desire to assemble joints prior to the curing times on the certification, new slip and tension/creep tests could be undertaken following the desired curing times prior to assembly.
Discussion Point 5
Following the Cure Times on the Cert

• A certification may state a minimum cure time of 7 days at 70°F and 50% RH, but conditions in the shop or field will vary from this. How is the cure time reconciled?
• The RCSC specification does not address this, but looking at it logically:
 – The times on the cert are minimum cure times, and are the times that were followed in the laboratory prior to assembling the plates for testing.
 – If the temperature is 50°F it is reasonable to assume that the cure time prior to assembly would be greater; likewise, if the temperature is 95°F, it is reasonable to assume that the cure time would be less.
 – Consider asking the manufacturer for a curing time/temperature/humidity chart that shows equivalency in the degree of curing achieved under the conditions reported on the certification.
 – Submit the proposed curing schedule the EOR.
Discussion Point 6
Can Joints be Prepared to SSPC-SP11

- Section 3.2.2 of the RCSC specification says that “coated faying surfaces shall first be blast cleaned and subsequently coated with a coating that is qualified…”
- Ballot is underway to test the coating over the surface preparation that will be used in the shop/field. If it passes, the degree of surface preparation will be included as a test variable.
- Unless the ballot passes and the standard is changed, the preparation is by abrasive blast cleaning.
- Consider proposing alternate surface preparation to the EOR.
Discussion Point 7
Joining 2 Certified Coatings

- If two different brands of the same generic type (e.g., inorganic zinc) have their own Class B certifications, it cannot be assumed that the two together will meet Class B.
- If two different brands of a different generic type (e.g., inorganic zinc and organic zinc) have their own Class B certifications, it cannot be assumed that the two together will meet Class B.
- The specific combination of the coatings that will be used should be tested to be certified.
Discussion Point 8
Coatings Beneath Bolt Head and Washer/Nut

- Compression of the coating beneath the bolt head and washer/nut could affect the bolt pretension for tension creep testing since the clamping force is accomplished using 7/8” A490 bolts.
Discussion Point 8
Coatings Beneath Bolt Head and Washer/Nut (con’t)

• Compression will not effect slip coefficient testing because the clamping force is maintained continuously during the test using a hydraulic cylinder.
Discussion Point 8
Coatings Beneath Bolt Head and Washer/Nut (con’t)

• Compression of the primer is taken into account in the tension creep testing since primer is applied to the backsides.
• Application of additional coats on the backside (beneath the bolt head and washer/nut) is not taken into account unless specifically tested that way.
• Professionals associated with the RCSC specification have stated that plates with 10 mils of coating on the backside (and beneath the bolt head and washer/nut) have been successfully tested in the past, and assume that 15 mils would be acceptable.
• However, because of the many different coating types being used, if there is interest in applying all coats to the back sides of splice plates in the shop, consideration should be given to testing the specific products, especially if Class B certification is required.
Painting of Bolt Holes

• The is no universal agreement on whether or not bolt holes should be painted.

• Corrosion in bolt holes does not affect the life of the structure – once fasteners are in place, weather is sealed out.

• Corrosion in bolt holes can lead to rust staining on surrounding surfaces prior to erection.
Painting of Bolt Holes (con’t)

3.4 “Miscellaneous Surfaces to be painted and the coating system to be used shall be as indicated on plans and/or contract documents. Unless otherwise noted, paint is not required on flange surfaces that will be embedded in concrete, or inside bolt holes, although overspray is permitted on flange surfaces and inside bolt holes.”
Painting of Bolt Holes (con’t)

- SSPC-PA 1, “Shop, Field, and Maintenance Painting of Steel,” was revised and reissued June 1, 2016.
- A portion of paragraph 7.8.1 states, “The application to, or removal of, coating from bolt hole interiors is not required unless specified in procurement/specification documents, although overspray coating is frequently present.”
- The project specification will dictate how bolt holes are to be treated, but is common to see them incidentally painted with overspray, rather than fully coated.
Discussion Point 9
Bolt Holes when using DTI Washers

• When using DTI washers, painting of bolt holes should be considered as the washer creates a gap.
• Rather than solely relying on the coating to continuously seal the gap, it may be worth specifying the painting of the bolt hole to control corrosion and rust bleed.
Cleaning and Painting of Fasteners
Black Bolts

- SSPC-PA Guide 13 “Guide Specification for Application of Coating Systems with Zinc-Rich Primers to Steel Bridges” addresses the painting of black bolts and galvanized bolts in sections 5.5 and 5.5
 - When the bolts are installed prior to cleaning and painting the steel, the steel and fasteners are blast cleaned and painted at the same time.
 - When installed after the steel is painted, the fasteners should be blast cleaned in place and painted.
Cleaning and Painting of Fasteners
Black Bolts (con’t)

• There is substantial risk associated with blast cleaning fasteners installed in painted steel.
• To clean all surfaces and threads, the nozzle has to be held at many angles and directions – there is potential for significant overblast damage of the surrounding coating.
• Overblast damage may not be visible, escaping repair.
Cleaning and Painting of Fasteners
Black Bolts (con’t)

- Large areas surrounding the fasteners have to be cleaned and painted, which becomes more complicated as more shop coats are applied:
 - Feathering
 - Number of coats
 - Squaring up
Cleaning and Painting of Fasteners
Galvanized Bolts

- Consideration should be given to replacing black bolts with treated or galvanized bolts to eliminate the need for blast cleaning.
• SSPC-PA Guide 13 recommends that galvanized fasteners be cleaned by solvent cleaning, hand tool cleaning, power tool cleaning, or water jetting.

• For lubricant wax/die applied to nuts, it recommends using an alkaline household cleaner such as ammonia.

• Lubricant wax/die is easier to remove from HDG assemblies than mechanically galvanized.
Cleaning and Painting of Fasteners

Galvanized Bolts (con’t)

• Section 5.4.4 of the Guide requires the removal of “excessive dye,” and in commentary notes to 5.4.4 it states that, “Any dye coloring remaining on galvanized nuts after weathering or the required surface preparation is not believed to be detrimental to subsequent coating performance or appearance. A white cloth wipe test with no color transfer can be used to confirm that all lubricant and nonabsorbed dye has been removed, leaving only the residual ‘stain’ on the surface.”

• Standards are not available that define the amount of residual staining that can be allowed, so it becomes a project-specific decision.
Cleaning and Painting of Fasteners
Galvanized Bolts (con’t)

• Project-specific test
• MEK used to remove the lubricant.
• After removal, the residual stain was not removed by rubbing with a white cloth.
• Coating adhesion was assessed by knife cutting per ASTM D6677, Standard Test Method for Evaluating Adhesion by Knife.
• Adhesion was satisfactory.
Another Alternative

- Nuts with lubricant applied only to the nut threads and mating face of the nut (LeJeune “no lube” fasteners).
- Need to educate to assure proper installation.
Discussion Point 10
Repair of Damaged Galvanizing

- Damage to the galvanizing is sometimes excessive and can be caused by using too large a socket, which may be the case here.
- There is a difference between “smeared” galvanizing and damaged galvanizing. “Smeared” is still protective and may not require touchup.
- Galvanizing usually touched up with either organic zinc primer or epoxy mastic (typically aluminum filled) followed by the same intermediate and finish applied to the rest of the structure.
- If the HDG is not weathered, some specifications require the use an a cleaning/etching solution prior to painting.
Cleaning and Painting of Fasteners - Paint Application

- No matter what coating is being applied or the degree of cleaning that is used, it is critical that the coating be thoroughly worked into threads and crevices.
Summary

- Coefficient of friction and tension creep testing used to certify coatings for slip-critical bolted connections
 - Coefficient of Friction Testing is first, followed by Tension Creep
 - COF testing requires ~7 minutes per test (5 tests total); tension creep testing requires 1,000 hours (42 days)
 - Clamping force for COF is maintained continuously during the test using a hydraulic cylinder; clamping force for tension creep is accomplished using 7/8” A490 bolts
 - Coating must pass the criteria for both tests to be certified
 - Class B is the greatest COF (0.50), Class C (0.35), Class A (0.30)
 - Very tight controls on coating thickness, amount of thinner, dry time
 - Certification is based on a thickness 2.0 mils less than tested
Summary (con’t)

- Challenges associated with using coatings in slip-critical bolted connections
 - Unless specifically tested otherwise, the certification is based on the same coating on the faying surfaces and back side of the plates
 - Unless tested, can not assume that two products that have Class B certifications will meet Class B when mated together
 - Unless tested, there is risk in assuming that coats of paint beneath bolt heads and washer/nuts will not effect bolt pretension (and the tension creep results) – the tests are run with only the primer beneath the bolt and washer/nut
 - Based on an FHWA study, thermal spray coatings exhibit Class B, but are not Class B when sealed
 - The requirements for DFT, thinning, and dry time prior to assembly must be in accordance with the criteria reported in the certification
Summary (con’t)

• Common approaches for addressing bolt holes (to paint or not to paint)
 - There is no universally accepted approach
 - SSPC PA Guide 13 (which is also AASHTO/NSBA Steel Bridge Collaboration S8.1-2014) indicates that unless specified, paint is not required inside of bolt holes, but overspray is permitted
 - SSPC-PA1, “Shop, Field, and Maintenance Painting of Steel” states that the application or removal of coating from bolt hole interiors is not required unless specified, with overspray frequently present
Summary (con’t)

• Approaches to cleaning and painting galvanized and black fasteners
 - SSPC-PA Guide 13 indicates that black bolts should be blast cleaned, even when installed after the steel has been painted
 - There are significant risks associated with damage to the surrounding coating if the fasteners are blast cleaned
 - Consideration should be given to using treated bolts or galvanized bolts instead of black bolts to eliminate the need for blast cleaning
 - Painting of galvanized fasteners requires the removal of the lubricant/dye from the nuts
 - SSPC-PA Guide 13 states that residual dye that passes a white cloth wipe test after cleaning is not believed to be detrimental
 - The thoroughness of coating application to threads and crevices is critical to the successful performance of the system
Questions?

Ken Trimber - 412-788-1300, x204
(ktrimber@kta.com)