Long Life Asphalt Pavement – LLAP
Implementation of Special Provisions

Neal Fannin
Pavement Materials
CMD

Gary Hoffman
Director of Technical Services
PAPA
Genesis of LLAP Specification

- **Transportation Quality Initiative (TQI) 2014**
 - Improve Leadership Culture
 - Workforce Development
 - Process Improvement
 - Technical Improvement
Genesis of LLAP Specification

2014-2015 Transportation Quality Initiative Framework

Leadership Culture
- Leadership
- Training
- Culture of Quality

Process
- Culture of Quality
- Contractual
- Pre-construction

Technical
- Culture of Quality
- QA/QC
- Materials
Genesis of **LLAP** Specification

- **Technical Improvement Workgroup**
 - Technical Goal #2 of 5 → "**Develop Long Life Concrete and Asphalt Pavement Specifications**"
LLAP Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add LLAP/Perpetual pavement to the Asphalt Pavement Improvement Committee as a work function. Identify ‘primary author’</td>
<td>September 2015 COMPLETE</td>
</tr>
<tr>
<td>Hold internal meeting with PAPA, Pavement Design, Innovation & Support Services staff and FHWA to discuss development of a LLAP specification. Identify States with LLAP/Perpetual pavement specifications and those components that the Department should consider</td>
<td>October 2015 COMPLETE</td>
</tr>
<tr>
<td>Develop initial LLAP specifications for internal (APQIC) member review</td>
<td>December 2016 COMPLETE</td>
</tr>
<tr>
<td>Reconcile comments from APQIC</td>
<td>February 2016 COMPLETE</td>
</tr>
<tr>
<td>Input from work group on Lab Performance Test Protocols</td>
<td>March 2016 COMPLETE</td>
</tr>
<tr>
<td>Complete clearance Transmittal of SSP</td>
<td>July 2016 COMPLETE</td>
</tr>
<tr>
<td>Request candidate pilot LLAP projects for implementation from Districts and PTC for construction in 2017.</td>
<td>November 2016 COMPLETE</td>
</tr>
<tr>
<td>Develop POA for monitoring pilot projects and their performance through an Asset management approach.</td>
<td>TBD - 2017</td>
</tr>
</tbody>
</table>
LLAP Pavement Design

- Use Guidelines for Demo Projects
- MEPDG (Comparison)
- Perpetual Pavement Best Design
LLAP Asphalt Mix Design

- **Minimum Effective AC Content** (P_{be})

 * Interim Step to Performance Testing

- **SuperPave Design Volumetric Adjustments** (3%, 3.5% voids, gyrations)

- **Binder Modification** (i.e. polymers)
LLAP Asphalt Mix Design

- SMA on Interstates
- Full Deployment of WMA
- Required Use of Anti-Strip Additive
- Asphalt Rich Base
- Optimized – Balanced Mix Design (i.e. Performance Testing)
LLAP Current Features

• Written as a series of special provisions.
 – Overlay projects
 – Structural overlay projects
 – Full depth reconstruction

• Will only be used on interstate or interstate look- a-like projects initially.

• Performance testing is the most important and different part of this specification.
LLAP Construction Specifications

- MTV Required
- Longitudinal Joint Density Specification
- **RIDE SPECIFICATION OPTIONAL**
- Tack Coat Every Layer (New Section 460)
- % **WITHIN TOLERANCE (PWT) ACCEPTANCE**
- **INCENTIVIZE CRITICAL ELEMENTS (i.e. MAT DENSITY)**
Balanced Approach to Mix Design

- Looks good, tastes bad.
- Looks bad, tastes good.
Balanced Approach to Mix Design

• Looks good & tastes good?
Heavy Duty ID2 placed in 1991 – 25 years

Trying to make this the rule rather than the exception.
Performance Related Testing (Rutting)

- Hamburg Wheel Tacking Test. (AASHTO T 324)
 - Required for Mix Design
 - Measures rutting potential
 - Samples fabricated from gyratory samples or cores.
 - Test run at 122°F (50°C)
 - Required cycles and rut depth limits vary depending on mix type (SMA) and layer (wearing, binder)
Performance Related Testing (Cracking)

- **Disk-Shaped Compact Tension (DCT) testing. (ASTM D7313)**
- **Required for Mix Design**
 - Measures fracture energy (Divide the area under the curve by the specimen area.) \(G_F = \frac{W_f}{Area_{lig}} \times 10^6 \)
 - Samples fabricated from gyratory samples or cores.
 - Test run at 10\(^0\) C below the low PG mix designation.
 - Fracture energy requirements vary depending on mix type (SMA) and layer (wearing,
Performance Related Testing (Cracking)

- **Semi-Circular Bending (SCB)** testing. (AASHTO TP 105) For information only during pilots.
 - Measures fracture energy. (Divide the area under the curve by the specimen area.) $G_F = \frac{W_F}{Area_{lig}} \times 10^6$
 - Samples fabricated from gyratory samples or cores.
 - Test run at 10^0 C below the low PG mix designation.
 - Fracture energy requirements vary depending on mix type (SMA) and layer (wearing,
Performance Related Testing (Cracking)

- **Illinois Flexibility Index Test** (IFIT). (AASHTO XX-XXX) For information only during pilots.
 - Measures fracture energy.
 - Uses fracture energy and load/displacement slope to compute Flexibility Index.
 - Samples fabricated from gyratory samples or cores.
 - Test run at 25°C (77°F)
 - Fracture energy requirements vary depending on mix type (SMA) and layer (wearing, binder)

\[FI = \frac{G_f}{m \times A} \]
Performance Related Testing (Cracking)

- **Overlay Test (OT).** (TEX-248-F) For information only during pilots.
 - Measures fatigue or reflective cracking potential. (number of cycles to failure.)
 - Samples fabricated from gyratory samples or cores.
 - Test run at 25°C (77°F).
 - Applies load to induce 0.025 inches displacement.
 - Number of cycles to failure is reported along with percent decline in load.
LLAP Current Features

- **Asphalt Rich Base Course**
 - PWT acceptance includes incentive / disincentive.
 - Tack all layers
 - Design at 3% voids
 - Design 1 gyration level lower than other courses.

- **Need for low rut and high bottom-up crack resistance.**

- **High DCT fracture energy requirement (460 J/m²) for crack resistance.**

- **No Hamburg testing requirement.**
LLAP Current Features

• **Base Course**
 – Tack all layers.
 – PWT acceptance includes incentive/disincentive.
 – DCT required as performance testing.
 – Anti-Strip Required.
 – WMA Technology Required

• Need for low rut and moderate crack resistance.

• Moderate DCT fracture energy requirement (400 J/m^2) for crack resistance.

• No Hamburg testing requirement.
LLAP Current Features

• **Binder Course**
 - PWT acceptance includes incentive / disincentive.
 - Tack all layers
 - MTV required
 - DCT and Hamburg Wheel track test required as performance testing
 - Anti-strip required
 - WMA technology required

• **Need for moderate rut and high crack resistance.**

• **High DCT fracture energy requirement (460 J/m²) for crack resistance.**

• **High to moderate Hamburg requirement (12.5mm at 20,000 cycles) for rut resistance.**
LLAP Current Features

- **Wearing Course**
 - SMA only
 - Tack all layers
 - MTV required
 - 2% density incentive possible
 - DCT and Hamburg Wheel track test required as performance testing
 - Anti-Strip Required
 - WMA Technology Required

- Need for very high rut and crack resistance.

- Very high DCT fracture energy requirement (690 J/m²) for crack resistance.

- Very High Hamburg requirement (6.25mm at 20,000 cycles) for rut resistance
• Ride incentive is optional.

• Joint incentive / disincentive is required.
Many Incentives

- SMA wearing
 - Possible 2% incentive for Density.
 - Possible incentive for ride. (if included)
 - Possible incentive for joints.
- Binder
 - Possible 4 % for mix under PWT.
- Base
 - Possible 2 % for mix under PWT.
- Asphalt Rich Base
 - Possible 2 % for mix under PWT.
Current Demonstration Projects

- District 2-0 – SR 0080 Sect. B34 (ECMS 82105)
 - Mill and overlay
 - Projected let – 7/2017

- District 10-0 – SR 0079 Sect. 247 (ECMS 91919)
 - Structural overlay
 - Projected Letting 11/2017

- District 11-0 – SR 0279 Sect. A83 (ECMS 87772)
 - Binder & Wearing Performance Related Testing only.
 - Projected Letting 1/2017
Questions?